
Firmware Analysis - 1
By Jake Jepson

About Me:
Jake Jepson
• Security Researcher at Red

Balloon Security
• Masters in Systems Engineering

from CSU
• Bachelors in Computer Science

with a concentration on
Networks and Security from CSU

4

Let's do that on a boat!

Class Overview
• What is Firmware?

• Tools and Techniques

• NAC-1 Autopilot Device Jump Start – I don’t have an exploit developed, but I can help you get
started.

• Basic Recon

• OTA firmware update exploration

• Device firmware exploration

Take this time to boot into Linux if you have not done so already.

Rhetorical Introduction Questions
• What is Firmware?

• From Chatgpt: “Firmware is a specific class of computer software that provides low-level control for a
device’s specific hardware. Examples include BIOS and Embedded Systems.”

• How do you identify file types?
• File extensions (.txt, .bin, .exe, …)

• What if it doesn’t have a file extension? What if the file extension is vague? Ex: .bin

File Signature
AKA Magic Bytes
• Beginning bytes of a file that identifies

the file type.
• What if it doesn’t have a file signature?

Ex: Extracted firmware from device.

Context
• Ex: Extracted firmware from ESP

device. (ESP/Espressif is a chip and
board manufacturer) - The file type is
ESP firmware.

• ESP32 Magic Byte is 0xE9. Is that
enough to accurately identify the file
as an ESP32 firmware image?

Other Techniques
• Difficult to determine file type without

unique file extension, file signature or
context.

• Narrow down file type with additional
techniques:

• Encoding – Representation of data.
• ASCII – plain text

• Unicode – multi-language, emojis, etc.

• Binary

• Hundreds more…

• Entropy – Measurement of randomness or
unpredictability.

• Encrypted: Very High

• Compressed: High-Very High

• Text/Binary/Other: Often Low to Mediumjson ~ 0.56 zip ~ 0.96 Encrypted 7z ~ 0.97

Some Common Tools
• file - Command-line tool that uses file signature database to identify the type of a file.

• Usage: file <filename>

• binwalk - “Binwalk is a fast, easy to use tool for analyzing, reverse engineering, and extracting
firmware images.” Also heavily relies on file signatures.

• Usage: binwalk <filename>

• ofrak - A wrapper for many file identification and file manipulation tools including file and binwalk.
• Usage: ofrak gui and then upload the file and select Identify

• strings - Extracts null-terminated strings from files. Does not work well with Rust and Go binaries
as they don’t use null-terminated strings.

• Usage: strings <filename>

• xxd/hexdump - Dumps the data in both hexadecimal and ascii format.
• Usage: <command> <filename>

• There are many other file manipulation and identification tools out there.

Lab 0: Tool Familiarization – 4m
1. Linux is not required but highly recommended for these next couple of labs.

2. Grab a copy of the file firmware_analysis_1_class_files from the share.

3. Use file, binwalk, and ofrak to identify the file type and compare their results.
1. file <filename>

2. binwalk <filename>

3. ofrak gui  upload file to webpage  then select Identify

4. Decompress/Extract the file based on the file type. Not sure how? Here are some examples:
1. zip (.zip)  unzip <filename>
2. 7z (.7z)  7z e <filename>
3. tar (.tar.*)  tar -xvf <filename>
4. gzip (.gz)  gunzip <filename> or gzip –d <filename>

5. xz (.xz)  xz -d <filename>
6. bzip2 (.bz)  bzip2 -d <filename>

Lab 0: Answer
• It was a Zip archive.

• It can be decompressed using:

 unzip <filename>

• Revealing another file named: whatami

Lab 1: Puff the Magic Dragon Ate
the Magic Bytes – 5m
• I have zero’d out the file signature of the whatami file.

1. What do the popular file identification tools tell us:
1. File?

2. Binwalk?

2. What’s the entropy of the file?
1. binwalk -E <filename>

3. What does binwalk’s LZMA scan tell us? (LZMA is a popular
compression algorithm with a somewhat unique pattern.)
1. binwalk -Z <filename>

2. Note: Scan takes awhile. Not necessary to complete the full scan.

4. What are some potential next steps to determine the file type?

What else can we try?
• Multiple valid approaches to further narrowing down the file type

including but not limited to:
• Bruteforce – try different magic bytes, decompress, check results

• Studying popular compression algorithm headers and comparing
patterns.

• Let’s try a ML/AI tool called Magika from Google
• ML model trained to identify file types. 10M files. 120 Types.

• Like most ML/AI tools its not perfect but sometimes works like magic.

• Go to: https://google.github.io/magika/ and upload the whatami file.
• Don’t worry it runs locally in the browser…

• What does Magika identify it as?

https://google.github.io/magika/

Lab 1: Answer
• The whatami file is an XZ compressed archive. Decompressing it would reveal a tarball.

1. Using a hex editor such as ghex. Open the file and fix the magic bytes like so:
1. ghex whatami

2. For simplicity decompress the archive and extract the files from the tarball using the command:
1. tar -xvf whatami

Enough practice lets
look at a real device!
NAC-1 Autopilot from Simrad enters the chat…

NAC-1 Autopilot:
Basic Recon
• What is it?
• What does it do in a boat?

From NAC-1_Hydraulic_Pilot_Pack[…].pdf

Controller/Screen Maybe?

Pump

GPS Antenna

CAN Network

From https://www.simrad-yachting.com/

NAC-1 Autopilot:
Basic Recon
• Available software download… don’t mind if I

do…
• Software updates via multiple routes

• AP44/48?

• IS42?

• ST10 and swup tool?

NAC-1 Autopilot:
Basic Recon
• AP44/48 = Autopilot Controller
• IS42 = Display
• ST10 Simnet Programming Toolkit... Or is it?

• Note URL: “navico-can-to-usb-converter-st10”

• Starting to piece together the picture:

• Multiple devices can update the autopilot
firmware over CAN.

• Further questions remain:

• How do they secure it?

• Is it secured or is it open?

• Is the firmware encrypted or signed?

Lab 2: Firmware First Look – 4m
1. Navigate to whatami_contents to find the file:

NAC1_1_0_03.zip

2. Decompress the archive using the command:
unzip NAC1_1_0_03.zip

3. This should reveal a file named:
NAC1 1_0_03_00.swup

4. Using any of the previously discussed tools determine the file type.

Lab 2: Firmware First Look – 4m
1. Navigate to whatami_contents to find the file:

NAC1_1_0_03.zip

2. Decompress the archive using the command:
unzip NAC1_1_0_03.zip

3. This should reveal a file named:
NAC1 1_0_03_00.swup

4. Using any of the previously discussed tools determine the file type.

5. Answer: XML

6. Open NAC1_1_0_03_00.swup in a text editor and begin exploring its
contents.

Lab 3: What now? – 5m
• We know:

• Its an XML file.
• Contains a large amount of text
data.

• Somewhere in this file is a
software update.

• From a quick skim of the file, we
can observe:

• Upload start address.
• Checksum is used and its location.
• Data length location.

• But where is the binary we can
open in Binary Ninja, Ghidra,
Angr, etc?

Lab 3: Answer
1. There are many valid ways

to get this answer. Here’s
ChatGPT's answer.

2. Its a S-Record which is a
basic ascii format for
binary images.

…

…

Lab 4: SWUP_2_Binary.human – 5m
1. Extract the S-record from the SWUP using the included python program:

python3 swup_2_srec.py

2. This should generate a file called:
nac1_update_firmware.srec

3. Next, convert the S-record to binary by running:
srec_cat nac1_update_firmware.srec -o nac1_update_firmware.bin –binary

4. Note: if you get an error about “srec_cat command not found” you can install it using:
sudo apt install srecord

Hold up. Let’s Pivot.
• Update files are often structured for distribution, not as full

system representations.

• Decompilers rely on a memory map to link references
accurately, but deriving this from update files is challenging
without format details. More on this later…

• For device firmware, the chip’s datasheet and reference
manual provide the necessary memory map.

• For this device the processor is a NXP LPC2368 chip.
• Datasheet: LPC2364_65_66_67_68.pdf
• Reference Manual: lpc23xx_um.pdf

• Therefore, lets pivot to looking at the device’s extracted
firmware.

*Hand waves entire HWRE
process due to time
constraints*

SWRE Basics 1/2
• Definition: Software reverse engineering is the process of understanding how software works

without having the original source code.

• Levels of Abstraction:
• Binary: Processors follow instructions made up of 1’s and 0’s.

• Assembly: A low-level language that closely represents machine instructions (binary).
• Architecture-Specific: Different CPU architectures (x86, ARM) have their own assembly languages.

• Intermediate Language: The various language representations between the high-level language and
assembly.

• High Level Language: Human readable, architecture independent language.

BINASMILHLL

Compilation Compilation Assembly

DisassemblyDecompilation

One-to-One MappingMany-to-Many MappingMany-to-Many Mapping

Note: Decompilation rarely
results in working code.

Hence the missing arrow.

SWRE 2/2
• Static Analysis:

• What: Examining code or binaries without
running them.

• Tools: Disassemblers (e.g., IDA Pro,
Ghidra), Decompilers, Hex Editors.

• Dynamic Analysis:

• What: Observing how the program
behaves when it runs.

• Tools: Debuggers (e.g., x64dbg, OllyDbg),
Virtual Machines, Sandboxes.

• Both have their limitations. We will be
focusing on static analysis today.

Image from: https://secretly.dev/images/reverse-engineering.png

Lab 5: Looking at the Firmware – 3m
1. Open the binaryninja folder on

the desktop.

2. Double click the binaryninja
application to start it.

3. Select File -> Open and open the
firmware analysis database
named:
firmware_lowrance.bin.bndb

4. At the center top of the screen
there are three drop downs that
control different views.

5. Spend a couple of minutes
exploring the different “views”.

Lab 6: Scenario Setup
1. Say we want to send specific, potentially malicious CAN messages via

modified autopilot firmware (similar to the earlier truck attack).

2. The normal high level CAN Message process:
1. Code running on processor places values in specific memory/register

locations (aka processor peripherals)
2. Stuff occurs.
3. CAN messages appear on bus.

3. By modifying the code responsible for sending CAN messages, we can alter the messages it
transmits.

4. Using accurate peripheral memory maps, we can identify the code that references these
peripherals. (I’ve setup the peripheral memory maps already)

Lab 6: Tracing References - 5m
1. With firmware_lowrance.bin.bndb

open in Binary Ninja set the
view selectors to:
1. Mapped | Linear | High Level IL

2. Next in the main panel scroll to
the Sections section (near the
top of the page).

3. Click on the first address of
the CAN1 section. Notice the
Code References that appear on
the left side of screen in the
Cross References panel.

4. Explore these references and try
to determine what these
functions may do.

Lab 6: Answer
1. Without further testing we can’t

say for sure, but we can observe
that:
1. sub_4418 interacts with CAN

interrupt, status, timing, and
error registers.

2. sub_4f84 is the only function
that interacts with the CAN
transmit frame register.

3. sub_56cc is the only function
that interacts with the CAN
receive frame register.

2. Therefore, we can predict:
1. sub_4418 -> can_setup

2. sub_4f84 -> can_write

3. sub 56cc -> can read

	Firmware Analysis - 1
	About Me: Jake Jepson
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Let's do that on a boat!
	Class Overview
	Rhetorical Introduction Questions
	File Signature AKA Magic Bytes
	Context
	Other Techniques
	Some Common Tools
	Lab 0: Tool Familiarization – 4m
	Lab 0: Answer
	Lab 1: Puff the Magic Dragon Ate the Magic Bytes – 5m
	What else can we try?
	Lab 1: Answer
	Enough practice lets look at a real device!
	NAC-1 Autopilot:�Basic Recon
	NAC-1 Autopilot:�Basic Recon
	NAC-1 Autopilot:�Basic Recon
	Lab 2: Firmware First Look 👀 – 4m
	Lab 2: Firmware First Look 👀 – 4m
	Lab 3: What now? 🤔 – 5m
	Lab 3: Answer
	Lab 4: SWUP_2_Binary.human – 5m
	Hold up. Let’s Pivot.
	Hand waves entire HWRE process due to time constraints
	SWRE Basics 1/2
	SWRE 2/2
	Lab 5: Looking at the Firmware – 3m
	Lab 6: Scenario Setup
	Lab 6: Tracing References - 5m
	Lab 6: Answer

