Firmware Analysis - 1

y Jak p
e sl "v_—a T U T =

About Me:
Jake Jepson

Security Researcher at Red
Balloon Security

Masters in Systems Engineering
from CSU

Bachelors in Computer Science
with a concentration on
Networks and Security from CSU

o e
i Md‘-ﬁﬁw e

e

in as far as we know; the first ever
~ wireless drive by attack on a truck.:

§
5
b=

£ . " “ ¥ e

y b, .
-

cet s We Were__SuccesSful in this attack.

‘ -~ .+’ . The car drove up along side it.
/“1 o ‘/ =

I ’ - —— .
! | : . / = : B
I L ! _— ; 2 | . - - » i |
b —— 4 e e + e s ——— z s ~ l |
R | : BuE— ERa-an Skl B, o o Aiee b i R et PO We-y L g
. - L - :
h W TR Jeme iy . l ol
. * : . |
- 4 : y > r
N - $ v * E : 'y oy ;
- W N NP - . RN O PRI Rk i [g w0t it g 8 ket 4 S gl F KN Ao i MENK 0 Dk i oS "';“:'“' b ‘*" ""' Zats

1

slow down
pulls out ahead.

&

Let's do that on a boat!

Class Overview

* What is Firmware?
* Tools and Techniques
* NAC-1 Autopilot Device Jump Start - | don’t have an exploit developed, but | can help you get
started.
e Basic Recon

* OTA firmware update exploration

 Device firmware exploration

Rhetorical Introduction Questions

 What is Firmware?

* From Chatgpt: “Firmware is a specific class of computer software that provides low-level control for a
device’s specific hardware. Examples include BIOS and Embedded Systems.”

* How do you identify file types?
* File extensions (.txt, .bin, .exe, ...)

* What if it doesn’t have a file extension? What if the file extension is vague? Ex: .bin

0+6 Magic 7z BC AF 27 1C
6+1 MajorVersion @

00)[04)|51%B189D}A2)09] 00] 00} 00 7+1 MinorVersion 4
‘—’_’_'_l—' 8+4 Header CRC E3¢A29D8151
C+8 MexctOffsat @9
14+8 NextSize @x5A
1C+4 NextCRC exB39A25C3

i iiiiii e e File Signature
AKA Magic Bytes

* Beginning bytes of a file that identifies
the file type.
What if it doesn’t have a file signature?
Ex: Extracted firmware from device.

Japoay aanyoubig

-®
\

//-29+1 Pm)pgfr“‘.ﬁ\\ﬂ]@ i Header

/7 2A+1 | PropartylD 4 Main streams info
2B+1 | | Propartgy@® & Packinfo
2C+1 Pack pos. @ Relative offset -»
2D+1 HunStreams 1
2E+1 ||| Propartyid 9 Siz

30+1 PropartydD © End[Pack infol
31+1 PropartyiD 7 Unpack Info
32+1 PropartylD @ Folder
33+1 NumFolders 1

ATZIPFILE e CUTABLE molINCABLE FORMAT ANGE ALBERTING

https://github.com/corkami/pics

25DqD4Dp A3pbaH

FIELDS VALUES
me@nux:~$./mini e_ident

me@nux:~$ echo $? EI_MAG @x7F, "ELF"
EI_CLASS, EI_DATA 1ELFCLASS32EL

ELF HEADER o o

42

@ 1 2 3 45 6 7 8 9 ABCDEF IDENTIFY AS ANELF TYPE e_version 1EV_CURRENT
@e: 7F .E .L .F 81 o1 SPECIFY THE ARCHITECTURE
1e: 82 6o 83 @0 81 9@ 00 68 40 00 ee 00 e_phoff 6x006000848
20: 34 08 01 e e_ehsize 0x0034
40::01 BB 0D 90 PG 0O 60 0B P@ 60 00 08 e_phnum 0001
50: 70 80 00 60 85 00 88 B0 p_type {PT_LOAD

68: (BB 2A 60 00 80 B8 @1 BB B B8 CD 8@ PROGRAM HEADER p-offset 6
TABLE p—paddr 68680000

EXECUTION INFORMATION p_filesz @x8000070

NN p_flags gPF_RIPF_X

Firmware Image Format

of a header, an extended header, a variable number of data segments and C O n t e X t

The firmware file consists o
a footer. Multi-byte fields are little-endian.

* Ex: Extracted firmware from ESP

File Header device. (ESP/Espressif is a chip and
board manufacturer) - The file typeis
ESP firmware.

* ESP32 Magic Byte is 0xE9. Is that
enough to accurately identify the file
as an ESP32 firmware image?

The image header is 8 bytes long:

Byte Description

Magic number (always exes)

2 =DIO, = =DOUT)

cest argument.

file output.json

file output.sqglite

-

[] Ignore Case

{"results":[{"da
ta":{"data":"089
20000DA283600" "
len":8 “"spns”:{"
244" : 4673.0,"245
":443675.251}, "1
d":{"da":255,"f1
ags":{"err":fals
e "ext":true,"rt
r":false}, "id":"
18FEEBOR" ,"pgn":
65248, "pri”:6,"s
a":0},"ts":17043
14850.11273} ,{"d
ata":{"data":"CB
BEBBFFF77A18083"
"len":8,"spns":{
"1482":3.8,"161"
:783.25,"191":0.
0,"4816":3.0,"50
15":0.0,"522":2.
0,"568":0.0,"573
":0.0,"574":0.0,
"606":0.0,"607":
0.0}k, "id":{"da"

snacE WET mmm T WA

-

axe

< Entropy >

json ~ 0.56

PKecouannne n.—X.k
Kool W N ..LoUu
tput.json.}.....

< Entropy >

zip ~ 0.96

oputput.json: ASCII text, with very long lines, with no line terminators

putput.sglite: SQLite 3.x database, last written using SQLite version 3041002

ore Case

0540

-
1wore Case
'

7Z.. Jiceas
seaiPavanans 7.m—
HoouMNooz.... "u..
Cisisanas 0...h..
..P5....TeW

L.| z

N...D..08.D8.I7V8
-9.2.c1..%..ks..

...5H4.....y.P.)
...... WeaoaoaBuu
..T..(u$.vd.].b.
" F.:fw.D..=....

LALLHP.L" .~ |Y.w
kl...:W.(.Z..M..
...02..0...E..D.
k@, e .)Rt
h....nXa.J....HV
Ashe..o... d.....
Ftf..w.—./...z...

n o~ M _a
3

-

< Entropy =

Encrypted 7z ~ 0.97

Other Techniques

 Difficult to determine file type without
unique file extension, file signature or
context.

* Narrow down file type with additional
techniques:

Encoding — Representation of data.
* ASCIl - plain text
¢ Unicode — multi-language, emojis, etc.
* Binary
* Hundreds more...

Entropy — Measurement of randomness or
unpredictability.

* Encrypted: Very High
¢ Compressed: High-Very High
* Text/Binary/Other: Often Low to Medium

Some Common Tools

file - Command-line tool that uses file signature database to identify the type of a file.

* Usage: file <filename>

 binwalk - “Binwalk is a fast, easy to use tool for analyzing, reverse engineering, and extracting
firmware images.” Also heavily relies on file signatures.

* Usage: binwalk <filename>

* ofrak - A wrapper for many file identification and file manipulation tools including file and binwalk.

* Usage: ofrak gui and then upload the file and select Identify

* strings - Extracts null-terminated strings from files. Does not work well with Rust and Go binaries
as they don’t use null-terminated strings.

* Usage: strings <filename>

» xxd/hexdump - Dumps the data in both hexadecimal and ascii format.

* Usage: <command> <filename>

* There are many other file manipulation and identification tools out there.

Lab 0: Tool Familiarization - 4m

1. Linux is not required but highly recommended for these next couple of labs.
2. Grabacopyofthefile firmware analysis 1 class files from the share.

3. Usefile, binwalk, and ofrak to identify the file type and compare their results.
1. file <filename>
2. binwalk <filename>

3. ofrak gui => uploadfiletowebpage 2 thenselect Identify

4. Decompress/Extract the file based on the file type. Not sure how? Here are some examples:

=
.

zip (.zip) =2 unzip <filename>

72(.72) 2 7z e <filename>

tar (.tar.*) > tar -xvf <filename>

gzip (.gz) =2 gunzip <filename> or gzip -d <filename>
xz(.xz) 2> xz -d <filename>

bzip2 (.bz) 2 bzip2 -d <filename>

o VAW

Lab ©: Answer

* It was a Zip archive.
* It can be decompressed using:
unzip <filename>

* Revealing another file named: whatami

Lab 1: Puff the Magic Dragon Ate
the Magic Bytes - 5m

* | have zero’d out the file signature of the whatami file.

1. What do the popular file identification tools tell us:
1. File?

2. Binwalk?

2. What’s the entropy of the file?

1. binwalk -E <filename>

3. What does binwalk’s LZMA scan tell us? (LZMA is a popular
compression algorithm with a somewhat unique pattern.)
1. binwalk -Z2 <filename>

2. Note: Scan takes awhile. Not necessary to complete the full scan.

4. What are some potential next steps to determine the file type?

What else can we try?

* Multiple valid approaches to further narrowing down the file type
including but not limited to:

* Bruteforce - try different magic bytes, decompress, check results

 Studying popular compression algorithm headers and comparing
patterns.

* Let’s try a ML/Al tool called Magika from Google
* ML model trained to identify file types. 10M files. 120 Types.

* Like most ML/AI tools its not perfect but sometimes works like magic.

* Go to: https://google.github.io/magika/ and upload the whatami file.

* Don’t worry it runs locally in the browser...

* What does Magika identify it as?

https://google.github.io/magika/

Lab 1: Answer

* The whatami file is an XZ compressed archive. Decompressing it would reveal a tarball.

1. Using a hex editor such as ghex. Open the file and fix the magic bytes like so:

1. ghex whatami

whatami - GHex

File Edit

AEOOAOOO
00000012 A3 EZ2 44 F2 EF FF 5D 00 33 1A 4A AB 8E ..
POOOE whatami - GHex

AOOOE

OpAeE File Edit

POOREPPEAAOOO 52 6 D6 B4 46 82 66 21 61 16 80 72Xz

0000EppPAAA12 B4 Ea bb ir oD 6o 35 n o hm R i

GGGGCGGEH@BE# 77 D7 EB 72 79 53 82 6C 25 B2 EO® 11 EC 93 C5 49 48 BBxJ L ryS. 1%,
AF E4 A2 A7 14 Al 16 13 E@ F2 BE AC CA 89 26 3F 9D

BBB@EGGBHGG45 D8 81 54 6C D2 ©D 29 67 65 E8 08 79 86 2A 0C 97 D

2. For simplicity decompress the archive and extract the files from the tarball using the command:

1. tar —-xvf whatami

Enough practice lets
look at a real device!

NAC-1 Autopilot from Simrad enters the chat..

From NAC-1_Hydraulic_Pilot_Pack]...].pdf

er/Scre

o

Auto/Stby
button

en Maybe?

Main

(3ft)

power
switch

12VDC

GPS Antenna

Point™-1AP™

(142qu Precision™-9
45m
(14ft)
5m
(15 ft)

a

" CAN Network

NAC-1 Autopilot:
Basic Recon

e Whatis it?
e What does it do in a boat?

From https://www.simrad-yachting.com/

o

NAC-1 Autopilot Computer

SKU: 000-11769-001

The NAC-1 is the centre of your autopilot system, containing the
electronics needed to operate and interface with other key components.
It has been designed for hydraulic or cable-steered boats up to nine
metres (30 feet) in length, and works with Simrad displays to provide a
fully integrated autopilot solution.

[J % simrad-yachting.com/downloads/#000-11769-001

NAC-1 Autopilot:
AF /U MRK< S0oTtware update (iviladie casiern) (<. 1.U-04.4.01) B a S i C R e C O n

AP70 MK2 Software Update (Russian, Ukranian) (2.1.0-64.4.51) « Available software download... don’t mind if |
AP70 MK2 Software Update (Standard) (2.1.0-64.4.51) do...
FU8O0 Software Update (1.3.02) Software updates via multiple routes

NAC-] §9Im:ﬁiﬁ | IRQQIE “ 0 Qm * AP44/48?
(o Sonere e (1199 | NAC-1 Software Update (1.0.03) Cisg?

Release Date: 3 October 2018 e ST10 and swup tool?

ERS & FISHFINDERS ~ RADARS SONAR & TRANSDUCERS

Version: 1.0.03

We are pleased to announce a software update for the NAC-1 autopilot
computer.

Some customers have reported that the NAC-1 is not memorising
external feedback sources like RF25 or analog signal into NAC-1
computer. After repowering the unit could randomly select VRF.

The software has been improved to prevent this from happening.

Software upgrade can be done from AP44/48 and 1S42 using USB, MFD
using the SD or microSD card slot, or by using the ST10 and swup tool
software.

< > C [% tors/navico-can-to-usb-converter-st10f () | ® Q@ r» 04 -«

< Back to Cables & Connectors

NAC-1 Autopilot:
Basic Recon

* AP44/48 = Autopilot Controller
* 1S42 = Display
e ST10 Simnet Programming Toolkit... Or is it?

)

* Note URL: “navico-can-to-usb-converter-st10

¢ Starting to piece together the picture:

e Multiple devices can update the autopilot
firmware over CAN.

ST10 Simnet Programming

SKU: 000-00020-001

ST10 Simnet programing Toolkit. o HOW dO they secure It)

* Further questions remain:

$169 « lIsitsecuredoris it open?

[ww=e AP44 Autopilot Controller .

SKU: 000-13289-001

2L0D

Is the firmware encrypted or signed?

The AP44 Autopilot Controller combines a full colour display with
intuitive controls and modern glass helm styling. Free your hands
from the wheel, cruise in comfort, and discover new ways to
search for fish. Connect your chartplotter to enable waypoint
navigation, and enjoy full autopilot control from compatible
Simrad displays.

Lab 2: Firmware First Look 8% - 4m

1. Navigatetowhatami contents to find the file:
NAC1 1 0 03.zip

2. Decompress the archive using the command:
unzip NAC1 1 0 03.zip

3. This should reveal a file named:
NAC1 1 0 03 00.swup

4. Using any of the previously discussed tools determine the file type.

Lab 2: Firmware First Look 8% - 4m

1. Navigatetowhatami contents to find the file:
NAC1 1 0 03.zip

2. Decompress the archive using the command:
unzip NACl1 1 0 03.zip

3. This should reveal a file named:
NAC1 1 0 03 00.swup

4. Using any of the previously discussed tools determine the file type.

5. Answer: XML

6. Open NAC1 1 0 03 00.swup in a text editor and begin exploring its
contents.

Lab 3: What now? — 5m

</> NAC11_0_03_00.swup X
We know: Users > jake > Desktop > <> NAC11_0_03_00.swup

1 [zxml version="1.0"?}}
e« Tts an XML file. 2 <SoftwareUploadPackage>
. 3 <SwupVersion>1.0</SwupVersion>
 Contains a large amount of text 4 | <SupportedProducts>
data.. 5 <Product Name="NAC1" Id="60003" SerialBitLength="14" DeviceClas
6 </SupportedProducts>
° Somewhere in thlS _Fl'Le iS a 7 <SWVers%onM?jor>1</SWVers%onM?joD
8 <SWVersionMinor>@</SwWversionMinor>
SO'Ftwa.re U-pda-te- 9 <SWVersionInternal>@3</SWVersionInternal>
10 <SWVersionBuild>@0</SWVersionBuild>
From a qu.iCk Skim O'F the .Fi'Le, we 11 <UploadStartAddress>0x4000</UploadStartAddress>
12 <UserProgramStartAddress>0x4100</UserProgramStartAddress>
Can Observe: 13 <ChecksumAddress>0x4004</ChecksumAddress>
14 <DatalengthAddress>@x4008</DatalengthAddress>
 Upload start address. 15 <SRecData>S@2B0000633A2FGA656E6BEI6ETI2F776F726873706163652F4D656
16 S21400410018FO9FES518FO9FES518FO9FES18FO9FEST7A
* Checksum is used and its location. 17 S21400411018FO9FE5586E20B920F11FE510F09FESD6
18 S21400412038410000484200004C4200005042000067
- Data length location. 19 S20C004130544200005842000052

20 $21400413820019FE5881090E5020411E30500000AB7

. . 21 S2140041480110A0E3801080E5AA10AQE38C1080E598
Bu't Where 1S the blnary We Ca'n 22 S2140041585510A0E38C1080E50010A0E3801080E5E1
open in Bj_na_ry Nin J a, Gh j_dra_, 23 S214004168AA10AQE38C1080E55510A0E38C1080E51B
Angr etC7 24 S214004178A01190E5201081E3A01180E5A01190E53C

I ° 25 S5214004188400011E3FCFFFFOAG110APE30C1180ESD4A

Lo N =4 CH1L.ARALT100ADRDI1NAARCAOL1NAONMNACEAAMINDAGALCYOr1A0ONACEY N

Lab 3: Answer

1. There are many valid ways
to get this answer. Here’s
ChatGPT's answer.

2. Its a S-Record which is a
basic ascii format for
binary images.

ChatGPT 40 mini v

what type of file is this: <?xml version="1.0"?>

<SoftwareUploadPackage>
<SwupVersion>1.0</SwupVersion>
<SupportedProducts>

@ ChatGPT 40 mini v

The file you've shared is an XML (eXtensible Markup Language) file, typically used for

storing and transporting data in a structured format that is both human-readable and
machine-readable.

&)

Breakdown of the file:

1. XML Declaration:

4. Hexadecimal Data (SRecData):

¢ The element <SRecData> contains what appears to be S-record data, which is a

binary encoding format commonly used for storing compiled machine code or
firmware in a text format.

¢ S-records are used in embedded systems and other hardware programming,

allowing the upload of firmware or software into devices.

Lab 4: SWUP_2 Binary.human - 5m

1. Extract the S-record from the SWUP using the included python program:
python3 swup 2 srec.py

2. This should generate a file called:

nacl update firmware.srec

3. Next, convert the S-record to binary by running:

srec cat nacl update firmware.srec -o nacl update firmware.bin —-binary

4. Note:if you get an error about “srec_cat command not found” you can install it using:

sudo apt install srecord

Hold up. Let’s Pivot.

* Update files are often structured for distribution, not as full
system representations.

3 L }
N L
| A T SO vt s
o e 3 S 25 S SRR e
x X 3 RN
A $ 2RV ST
{

* Decompilers rely on a memory map to link references L ENYEE
accurately, but deriving this from update files is challenging i e e >
without format details. More on this later... IR\ avcseer 01 =me

‘lzspiesdp.

* For device firmware, the chip’s datasheet and reference
manual provide the necessary memory map.

* For this device the processoris a NXP LPC2368 chip.
- Datasheet: LPC2364 65 66 67 68.pdf
¢ Reference Manual: 1pc23xx um.pdf

* Therefore, lets pivot to looking at the device’s extracted
firmware.

*Hand waves entire HWRE
process due to time
constraints*

SWRE Basics 1/2

* Definition: Software reverse engineering is the process of understanding how software works
without having the original source code.

* Levels of Abstraction:

* Binary: Processors follow instructions made up of 1’s and 0’s.

* Assembly: A low-level language that closely represents machine instructions (binary).
* Architecture-Specific: Different CPU architectures (x86, ARM) have their own assembly languages.

* Intermediate Language: The various language representations between the high-level language and
assembly.

* High Level Language: Human readable, architecture independent language.

Assemby

One-to-One Mapping

Many-to-Many Mapping Many-to-Many Mapping

Decom|lat|on

Note: Decompilation rarely
results in working code.
Hence the missing arrow.

. i?%g Static analysis ',...'E--}

Dynamic analysis

mov,
raxl

Sff Instrumentation

Disassembling

@ Debugging

Documentation

Image from: https://secretly.dev/images/reverse-engineering.png

Networking analysis

Fuzzing

-2-¢ MITM

SWRE 2/2

Static Analysis:

* What: Examining code or binaries without
running them.

* Tools: Disassemblers (e.g., IDA Pro,
Ghidra), Decompilers, Hex Editors.

* Dynamic Analysis:

* What: Observing how the program
behaves when it runs.

* Tools: Debuggers (e.g., x64dbg, OllyDbg),
Virtual Machines, Sandboxes.

* Both have their limitations. We will be
focusing on static analysis today.

Lab 5: Looking at the Firmware - 3m

¢ > fimware_low..ncebinbndb X+

1. Open the binaryninja folder on

the desk tOp. .# Symbols Q = Mapped v Linear~ Disassembly «
Name = @x@ On-chip Flash (512KB) {@
2. Double click the binaryninja {r} D
o o o sub_41c '
application to start it. j_sub_704 Type: Mapped
Q sub_428 Platform: thumb2
3. Select File -> Open and open the o j_sub_678 WAL S R
firmware analysis database R S
named : j_sub_688 r-x ©x00000000-0x00080000
firmware lowrance.bin.bndb T e roe - 0xE090000-0x00000014
_ il
s:b_450 rw- ©Ox3fffc814-0x3fffco18
4. At the center top of the screen sub_460 rw- ©x40000000-0x40008000
b 464 rw- 8x7fdeeees-ex7fde20ee
there are three drop downs that ol cun-ee L Pk
control different views. N 2 r-x ©x80000000-0x80004000
Iﬁ 0 rw- ©Ox80020000-0x8002040c
Chiiteae A= rw- ©x80101000-0x80101fe8
5. Spend a couple of man'te(s(: ’ Cross References s rw- 0Bxe@00080Q-0xe0080008
exploring the different “views”. O3 » Filter (23) rW- ©@xe00PPOO8-0xehOO4000

Lab 6: Scenario Setup

1. Say we want to send specific, potentially malicious CAN messages via
modified autopilot firmware (similar to the earlier truck attack).

2. The normal high level CAN Message process:

1. Code running on processor places values in specific memory/register
locations (aka processor peripherals)

2. Stuff occurs.
3. CAN messages appear on bus.

3. By modifying the code responsible for sending CAN messages, we can alter the messages it
transmits.

4. Using accurate peripheral memory maps, we can identify the code that references these
peripherals. (I’ve setup the peripheral memory maps already)

Lab 6: Tracing References - 5m

Mapped + Linear» High Level IL ~

1.

2.

With firmware lowrance.bin.bndb
open in Binary Ninja set the
view selectors to:

1. Mapped | Linear | High Level IL

Next in the main panel scroll to
the Sections section (near the

top of the page).

Click on the first address of
the CAN1 section. Notice the
Code References that appear on
the left side of screen in the
Cross References panel.

Explore these references and try
to determine what these
functions may do.

£t Symbols Q =

Name B

) ETEr—

sub_41c
j_sub_704
sub_428
j_sub_678
sub_434
sub_440
j_sub_688
j_sub_796
sub_456
sub_45¢
sub_4680
sub_464
sub_468

sub_46¢ >
N »

Cross References 42

» Filter (23)

~ Code References {23}
v sub_4418 {7}
|¢& 000004444 CAN1->C1

|¢& ©00008444c CAN1->C1

|¢& 000004464 CAN1->C1

|¢& 000084478 CAN1->C1

|¢& ©@8000447c CAN1->C1

g e J

57 mo | 35X

|¢ 08084488 CAN1->C1);
|¢< 000004494 CAN1->C1/

~ sub_4f84 {10}
|¢ o@eeee4fad if ((CAN
|¢ @ee@0@4fas8 if ((CAN
|¢ 000005028 CAN1->CA
|¢ 008085034 CAN1->CA
|¢ 000005048 CAN1->CA
|¢ ©@p@0B504c CAN1->CA

1, NAANANCACO NARMA . NA

0x0 On-chip Flash (512KB) {0x8-0x80008} Default

Sections:

Bx00000000-0Xx000860000
Bx00080000-6x000860014
ox3fffcoen-ox3fffca1s
Bx3fffcoee-ex3fffcol14
Bx46000000-0x40008000
ex7fdeeeee-6x7fde200a
Bx7fe00000-6x7fe04000
0x80000000-0x80004000
Bx80020000-0x8002040C
0x86101000-06x80101fe8
Bxe0000000-0xf0000000
BxeB0000000-0xe0000008
Bxe0004000-0xe0004078
BxeB8004000-0xe0004074
BxeB8004000-0xe0004074
Bxe0008000-0xe0008078
BxeB008000-6xe0008074
Bxe0008000-0xe0008074
BxeB800c000-0xe000cB34
Bxe0010000-6xe0010034
Bxe0014000-0xe0014044
BxeB014000-0xe0014074
0xe0018000-0xe0018074
BxeB01c08c-0xedB1c018
BxeB02c008-6xe0b62c018
Bxe0030000-0xe0030028
BxeB8034000-0xe0034010
BxeB8034000-0xe0034004
BxeB8034000-0xe0034010
BxeB036000-0xe0036004
BxeB03c000-0xedB3cB18
AvalN3rA?20-0xedB3cB28
9xe0044008 -
BxeB8048000-0xe0048085¢c
BxeB04c000-0xed04cB5c
PxedB50000-0xeBB5085¢c

On-chip Flash (512KB)
.synthetic_builtins {External}

GPIO (General Purpose Input/Output) {Wr
GPIO Port 8 {Writable data}

On-chip SRAM (32KB)

USB RAM (8KB)

Ethernet RAM (16KB)

Boot ROM/Flash

Timers {Writable data}

UART and IrDA {Writable data}

APB Peripherals

Watchdog {Writable data}

TIMER @ {Writable data}

TIMER/COUNTER 8 {Writable data}

Timer @ {Writable data}

TIMER 1 {Writable data}

TIMER/COUNTER 1 {Writable data}

Timer 1 {Writable data}

UARTO {Writable data}

UART1 {Writable data}

PWM (Pulse Width Modulator) {Writable d
PWM @ {Writable data}

PWM 1 {Writable data}

I2Ce6 {Writable data}

PCB (Pin Connect Block) {Writable data}
SSP1 (SPI) {Writable data}

A/D Converter {Writable data}

ADCO® {Writable data}

Analog/Digital Converter @ (ADCB) {Writ
ADC1 {Writable data}

Acceptance Filter {Writable data}
FullCAN Interrupt and Capture registers

CAN2 {Writable data}
CAN3 {Writable data}
CAN4 {Writable data}

Lab 6: Answer

1. Without further testing we can’t
say for sure, but we can observe £

1.

v sub_4418

|«
|«

|«

000004444
00000444c
000004464
000004470
00000447¢c

that . |¢ 000004488
|¢& ©@0004494
sub 4418 interacts with CAN o
: Im3 |¢ oepee4fas
interrupt, status, timing, and M el
error registers. |« oeeeese34
|¢ oeoeas640
: 1 |¢& oe000504
sub_4£84 is the only function ¥, e
that interacts with the CAN ¢ oeee0se64
transmit frame register. oo it
+ sub_56cc
sub 56cc 1is the only function b iy
s . . < 0000056d
that interacts with the CAN L
] 1 |¢& ©e0e056T4
receive frame register. D7 i
|¢ eeeea576c

Therefore, we can predict:

1.
2.
E

sub 4418 -> can setup
sub 4f84 -> can write

suub 56cc => can read

Cross References

» Filter (23)
~ Code References

CAN1->C1IER,CAN1 Interrupt Enable
CAN1->C1IER,CAN1 Interrupt Enable
CAN1->C1GSR, CAN1 Global Controller Status and Error Counter
CAN1->C1GSR, CAN1 Global Controller Status and Error Counter
CAN1->C1GSR, CAN1 Global Controller Status and Error Counter

<]
2]

CAN1->C1BTR, CAN1 Bus Timing = 0x1c00062
CAN1->C1BTR, CAN1 Bus Timing = 8x1c@002

if ((CAN1->__offset(
if ((CAN1->__offset(
CAN1->CAN1TFI1,CAN1
CAN1->CAN1TFI1,CAN1
CAN1->CAN1TID1,CAN1
CAN1->CAN1TID1,CAN1
CAN1->CAN1TDA1, CAN1
CAN1->CAN1TDA1, CAN1
CAN1->__offset(0x34)
CAN1->__offset(08x34)

data_4000830ce
data_400030c0
data_400030c4
data_400030c4
data_4000830c8
data_400030c8

CAN1
CAN1

0x14) & 4) == @)
@x14) & 4) ==)

Transmit frame Information Register (1)
Transmit frame Information Register (1)
Transmit Identifier Register (1) = argi[1]
Transmit Identifier Register (1) = arg1[1]

Transmit data bytes 1-4 (1)
Transmit data bytes 1-4 (1)
= arg1[3]
= arg1[3]

->__offset(0x24)
->__offset(0x24)

arg1[2]
arg1[2]

CAN1 << Bx160 u>> 0x10
CAN1 << Bx10 u>> 6x10
CAN1 << Bx16 u>> 6x18

*argl
*arg1

CAN1->CAN1RID,CAN1 Received Identifier Register
CAN1->CAN1RID,CAN1 Received Identifier Register
CAN1->C1RDA,CAN1 Received data bytes 1-4
CAN1->C1RDA,CAN1 Received data bytes 1-4

{11

	Firmware Analysis - 1
	About Me: Jake Jepson
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Let's do that on a boat!
	Class Overview
	Rhetorical Introduction Questions
	File Signature AKA Magic Bytes
	Context
	Other Techniques
	Some Common Tools
	Lab 0: Tool Familiarization – 4m
	Lab 0: Answer
	Lab 1: Puff the Magic Dragon Ate the Magic Bytes – 5m
	What else can we try?
	Lab 1: Answer
	Enough practice lets look at a real device!
	NAC-1 Autopilot:�Basic Recon
	NAC-1 Autopilot:�Basic Recon
	NAC-1 Autopilot:�Basic Recon
	Lab 2: Firmware First Look 👀 – 4m
	Lab 2: Firmware First Look 👀 – 4m
	Lab 3: What now? 🤔 – 5m
	Lab 3: Answer
	Lab 4: SWUP_2_Binary.human – 5m
	Hold up. Let’s Pivot.
	Hand waves entire HWRE process due to time constraints
	SWRE Basics 1/2
	SWRE 2/2
	Lab 5: Looking at the Firmware – 3m
	Lab 6: Scenario Setup
	Lab 6: Tracing References - 5m
	Lab 6: Answer

